Text: There is no required text for the course, but there will be required readings that will be made available by the instructor.

Lecture Overheads - Canvas
We will be using Canvas for the management of Chem 6770. Copies of many required readings and some lecture overheads will be posted on Canvas (https://online.usu.edu/).

Course Withdrawal: Refer to the current academic year registration calendar for details and deadlines concerning withdrawal conditions and deadlines.

Provisions: The administration of Chem 6770 will adhere strictly to the academic policies outlined in the most recent USU General Catalog, which can be found here: http://catalog.usu.edu/index.php
Students not enrolled in the course may sit in only with instructor approval.

Course Content: Chemistry 6770 is a graduate course and a part of the Biochemistry graduate core curriculum. It will cover the theory and practical approaches for an array of biochemical and biophysical techniques and is designed to provide you with a level of understanding sufficient to guide you in the acquisition and interpretation of appropriate data sets.

Course Assessment: Students in this class are expected to develop an understanding of the techniques and ideas covered in the course. Some will be covered in much greater depth than others and this will be reflected in the testing of the material. While the instructor will guide the course, the students will be responsible for adequately preparing for lecture as well as presenting a significant amount of the material to their peers. Attendance and participation are vital for this type of course and while attendance is not graded, participation is mandatory. A total of 100 points will be assigned based on participation in presentations and class discussions. Again, attendance is not mandatory, but you cannot participate if you are absent. It is the students’ responsibility to communicate with the instructor concerning their standing with regard to their participation points.

A combination of quizzes and laboratory assignments will be given throughout the course for a combined total of 70 points. Some quizzes will be announced ahead of time while others will not. This is why it is imperative to be prepared and attend class regularly.
2 exams worth 75 points each will be assigned throughout the first section of the course (Dickenson) (dates TBD with no less than one week notice prior to exam).

One of the goals of this course is to prepare you for graduate studies in Biochemistry/Chemistry at USU and to help facilitate your graduate research, you will compile a series of short reports detailing methods pertaining to the course. Specific requirements for the reports will be provided, but characteristics including the theory, necessary reagents, specificity, cost, time, and availability of equipment at USU are some of the key aspects to be included. The completed reports are worth a total of 80 points.

The point’s breakdown for the final section of the course (Taught by Prof. Johnson) will be discussed at the onset of his section.

Grading:

- Presentations and participation .. 100 points
- Quizzes and lab reports ... 70 points
- Technique Short report portfolio ... 80 points
- Two hourly exams .. 150 points

Total ... 400 points

In terms of final assignment of grades, you are guaranteed the following grades if your final class percentage lies within the indicated ranges.

- 100-90% A through A-
- 89.9-78% B+ though B-
- 77.9-68% C+ through C-
- 67.9-59% D+ through D-

Based on the overall class average at the END of the semester, the percentage cutoffs may be adjusted to be lower than those above at the instructor’s discretion. They will never, however, shift higher.

OBJECTIVE

In planning this course, I have identified three main course objectives:

1. *Gaining factual knowledge (terminology, classifications, methods, trends)*
2. *Learning fundamental principles, generalizations, or theories*
3. *Learning to apply course materials (to improve rational thinking, problem solving and decisions)*

Students with ADA-documented physical, sensory, emotional or medical impairments may be eligible for reasonable accommodations. Veterans may also be eligible for services. All accommodations are coordinated through the Disability Resource Center (DRC) in Room 101 of the University Inn, (435)797-2444. Please contact the DRC as early in the semester as possible. Alternate format materials (Braille, large print, digital, or audio) are available with advance notice.

Tentative Class Schedule

Detection and quantification of proteins and/or nucleic acids

- SDS PAGE
- Native PAGE
- 1D vs. 2D
- Protein Blots (discuss types)
- UV-Vis/Extinction Coefficient (Beer’s Law)
- Colorimetric assays
- Agarose Gel Electrophoresis
Tags (i.e. fluorescent labels and “click” chemistry)

How to Clone, express, and purify protein
 General PCR mutagenesis, restriction enzymes, vectors, ligation, transformation
 Cell types (codon usage, PTM, etc.)
 Purification techniques, solubility tags

How do I characterize my protein?
 Stability – 6 (Russ Middaugh Paper)
 Cofactors
 Gel Filtration
 Mass Spec
 Structure (i.e. CD, X-Ray, NMR
 Sequencing
 Is it an enzyme?
 Is it modified?

How do I know two proteins interact/measure how well they interact?
 Pull-down/immunoprecipitation
 FRET
 Yeast 2-hybrid
 ITC (isothermal titration calorimetry)
 SPR (Surface Plasmon Resonance)
 Static/Dynamic Light Scattering
 Anisotropy
 Chemical crosslinking
 Analytical ultracentrifugation

Protein/nucleic acid interactions
 Measuring them (EMSA, FP, FRET, Microarray)
 Interaction mimics (Aptamers)

Microscopy
 Light microscopy
 Principles (Numerical aperture, Diffraction limit)
 Fluorescence microscopy
 Principles (Jablonski Diagrams)
 Electron Microscopy
 Scanning techniques
 Novel methodologies