Search Options
Filter:     
Browse:    ALL  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z 
Faculty
Lisa M. Berreau

Lisa M. Berreau

Professor
Inorganic Chemistry
Faculty: Professor
Projects: BioOrganic and Inorganic/Medicinal/Synthetic, Catalysis and Reaction Mechanism, Inorganic
Location:  ESLC 245
Office Phone:  (435) 797-3509
Fax:  (435) 797-3390
O300 Old Main Hill
Logan, UT 84322

Education

B.S., 1990, Mankato State University
Ph.D., 1994, Iowa State University
Postdoctoral, 1995-98, University of Minnesota

Positions Available

Positions are available for new graduate students in the Berreau lab. Please contact Dr. Berreau for information about the application process. (lisa.berreau@usu.edu).

Research

The Berreau laboratory is interested in the role that metal ions play in human health, the environment, and catalysis. Our research is directed at understanding metal-promoted reactions that involve naturally occurring small organic molecules. The goal is to determine the fundamental chemical principles that control such reactions, so that this knowledge can be used to design new compounds that benefit human life. 

Outlined below are areas of current interest:

1) CO-releasing molecules

Carbon monoxide is generally thought of a toxic small molecule. However, recent studies indicate that a low concentration, CO is an important signaling molecule in humans and is known to dilate blood vessels and have anti-inflammatory effects. Based on these properties, an area of emerging research is the development of CO-releasing molecules for the controlled delivery of a specific amount of CO. We are contributing to this area through studies of the photoinduced CO-release reactivity of flavonols.

Recent publications:

K. Grubel, S. L. Saraf, S. N. Anderson, B. J. Laughlin, R. C. Smith, A. M. Arif, and L. M. Berreau, "Synthesis, Characterization, and Photoinduced CO-release Reactivity of a Pb(II) Flavonolate Complex: Comparisons to Group 12 Analogs," Inorg. Chim. Acta 2013, 407, 91-97.

K. Grubel, A. M. Marts, S. M. Greer, D. L. Tierney, C. J. Allpress, S. N. Anderson, B. J. Laughlin, R. C. Smith, A. M. Arif, and L. M. Berreau, "Photoinitiated Dioxygenase-type Reactivity of Open-Shell 3d Divalent Metal Flavonolato Complexes," Eur. J. Inorg. Chem. 2012, 4750-4757.

K. Grubel, B. J. Laughlin, T. R. Maltais, R. C. Smith, A. M. Arif, and L. M. Berreau, “Photochemically-induced Dioxygenase-type CO-release Reactivity of Group 12 Metal Flavonolate Complexes,” Chem. Commun. 2011, 47, 10431-10433.

K. Grubel, K. Rudzka, A. M. Arif, K. L. Klotz, J. A. Halfen, and L. M. Berreau, “Synthesis, Characterization, and Ligand Exchange Reactivity of a Series of First Row Divalent Metal 3-Hydroxyflavonolate Complexes,” Inorg. Chem. 2010, 49, 82-96.

2) Aliphatic carbon-carbon bond cleavage reactivity

Recent publications:

C. J. Allpress and L. M. Berreau, "A Nickel-containing Model System of Acireductone Dioxygenase that Utilizes a C(1)-H Acireductone Substrate," Eur. J. Inorg. Chem. 2014, 4642-4649.

C. J. Allpress, A. Milaczewska, T. Borowski, J. R. Bennett, D. L. Tierney, A. M. Arif, L. M. Berreau, "Halide-promoted Dioxygenolysis of a Carbon-carbon Bond by a Copper(II) Diketonate Complex," J. Am. Chem. Soc. 2014, 136, 7821-7824.

C. J. Allpress and L. M. Berreau, "Oxidative Aliphatic Carbon-carbon Bond Cleavage Reactivity," Coord. Chem. Rev. 2013, 257, 3005-3029.

C. J. Allpress, K. Grubel, E. Szajna-Fuller, A. M. Arif, and L. M. Berreau, "Regioselective Aliphatic Carbon-Carbon Bond Cleavage by a Model System of Relevance to Iron-containing Acireductone Dioxygenase," J. Am. Chem. Soc. 2013, 135, 659-668.

C. J. Allpress, A. M. Arif, D. T. Houghton, and L. M. Berreau, "Photochemically-initiated Oxidative Carbon-carbon Bond Cleavage Reactivity in Chlorodiketonate NiII Complexes," Chemistry – A European Journal 2011, 17, 14962-14973.

K. Grubel, G. K. Ingle, A. L. Fuller, A. M. Arif, and L. M. Berreau, “Influence of Water on the Formation of O2-reactive Divalent Metal Enolate Complexes of Relevance to Acireductone Dioxygenases,” Dalton Trans. 2011, 40 , 10609-10620.

L. M. Berreau, T. Borowski, K. Grubel, C. J. Allpress, J. P. Wikstrom, M. E. Germain, E. V. Rybak-Akimova, and D. L. Tierney, “Mechanistic Studies of the O2-dependent Aliphatic Carbon-carbon Bond Cleavage Reaction of a Nickel Enolate Complex,” Inorg. Chem. 2011, 50, 1047-1057.

K. Rudzka, K. Grubel, A. M. Arif, and L. M. Berreau, "Hexanickel Enediolate Cluster Generated in an Acireductone Dioxygenase Model Reaction," Inorg. Chem. 2010, 49, 7623-7625.

K. Grubel, A. L. Fuller, B. M. Chambers, A. M. Arif and L. M. Berreau, “O2-Dependent Aliphatic Carbon-carbon Bond Cleavage Reactivity in a Ni(II) Enolate Complex Having a Hydrogen Bond Donor Microenvironment; Comparison with a Hydrophobic Analog,” Inorg. Chem. 2010, 49, 1071-1081.

K. Rudzka, A. M. Arif, L. M. Berreau, “A Trinuclear Ni(II) Enediolate Complex: Synthesis, Characterization, and O2 Reactivity,” Inorg. Chem. 2008, 47, 10832-10840.

E. Szajna-Fuller, K. Rudzka, A. M. Arif, L. M. Berreau, “Acireductone Dioxygenase-type Reactivity for a Ni(II) Complex having Monoanionic Coordination of a Model Substrate: Product Identification and a Stuctural Requirement for Reactivity,” Inorg. Chem. 2007, 46, 5499-5507.

E. Szajna-Fuller, B. M. Chambers, A. M. Arif, L. M. Berreau, “Carboxylate Coordination Chemistry of a Mononuclear Ni(II) Center in a Hydrophobic or Hydrogen Bond Donor Secondary Environment: Relevance to Acireductone Dioxygenase,” Inorg. Chem. 2007, 46, 5486-5498.

E. Szajna, A. M. Arif, L. M. Berreau, “Aliphatic Carbon-Carbon Bond Cleavage Reactivity of a Mononuclear Ni(II) Cis-β-Keto-Enolate Complex in the Presence of Base and O2: A Model Reaction for Acireductone Dioxygenase (ARD),” J. Am. Chem. Soc. 2005, 127, 17186-17187.

3) Zinc-promoted catalysis in biological systems; relationships to therapeutic targets and metal ion toxicity

Metal ions play important roles in catalysis in biological systems, with one of the most abundant metal ions being Zn(II). By studying chemical reactions of relevance to those catalyzed by zinc enzymes, our goal is to provide detailed chemical insight that may assist in the development of new therapeutics and contribute toward understanding metal ion toxicity (upon replacement of Zn(II)).

Recent publications:

E. S. Elton, T. Zhang, R. Prabhakar, A. M. Arif, and L. M. Berreau, "Pb(II)-promoted Amide Cleavage: Mechanistic Comparison to a Zn(II) Analog," Inorg. Chem. 2013, 52, 11480-11492.

L. M. Berreau, "Zinc in Biology", In Comprehensive Inorganic Chemistry II, J. Reedijk and K. Poeppelmeier, Eds., Elsevier, 2013, pp. 179-205.

J. J. Danford, A. M. Arif, and L. M. Berreau, “Thioester Hydrolysis Promoted by a Mononuclear Zinc Complex,” Inorg. Chem. 2010, 49, 778-780.

J. J. Danford, P. Dobrowolski, and L. M. Berreau, "Thioester Hydrolysis Reactivity of an Fe(III)Zn(II) Complex," Inorg. Chem. 2009, 48, 11352 -11361.

K. Rudzka, A. M. Arif, L. M. Berreau, “Glyoxalase I-type Hemithioacetal Isomerization Reactivity of a Mononuclear Ni(II) Deprotonated Amide Complex,” J. Am. Chem. Soc. 2006, 128, 17018-17023.

L. M. Berreau, A. Saha, A. M. Arif, “Thioester Hydrolysis Reactivity of Binuclear Zinc Hydroxide Complexes: Investingating Reactivity Relevant to Glyoxalase II Enzymes,” Dalton Trans. 2006, 183-192.