Introductory Biochemistry, CHEM 3700, Summer 2019

Section LO1

Dr. Melissa Kofoed, ML 289, 797-0217, melissa.kofoed@usu.edu

<table>
<thead>
<tr>
<th>Office Hours:</th>
<th>Office hours during the summer semester are offered by appointment. Please feel free to email me (melissa.kofoed@usu.edu) to set up a time to meet.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisite</td>
<td>CHEM 2300 or CHEM 2310</td>
</tr>
<tr>
<td>Course Description</td>
<td>CHEM 3700 is a one-semester biochemistry class that covers the topics normally covered in a two-semester biochemistry sequence, but in less depth. The course focuses on the major classes of biomolecules and their role in microbial, plant and animal metabolism, as well as a more detailed look at the roles of these molecules in signaling pathways.</td>
</tr>
<tr>
<td>Course Communication</td>
<td>Course announcements will be made via the class Canvas page. You are responsible for checking Canvas at least once a day for new class announcements! Please feel free to email me with questions. I try to maintain a 24-hour response time during the week and a 48-hour response time on weekends. Regular online office hours will be held at the hours listed above using Webex. You may also email me to set up office hours by appointment. For academic questions, you will most likely get a quicker response by posting your question on Piazza. The link to Piazza is located on the Canvas navigation list on the left. Piazza is a free, online system where students can ask and answer questions. Not only will I be able to answer your questions, but my TA’s and other students will be able to offer answers as well. You also have the option to post anonymously on Piazza, although please be aware that as an instructor I will be able to see your identity. It is expected that your communication on Piazza will be respectful and considerate, no harassment of any kind will be tolerated. Piazza is not the forum to discuss personal information. If you have personal concerns, please email me directly.</td>
</tr>
</tbody>
</table>
| **Canvas** | Canvas is the where course content, grades, and communication will reside for this course. http://canvas.usu.edu

Your **username** is your A#, and your **password** is your global password (the same one you use for Banner or Aggiemail).

For Canvas, passwords, or any other computer-related technical support, contact the USU IT Service Desk via the contact information listed below.

- 435 797-4357 (797-HELP)
- 877 878-8325
- http://it.usu.edu
- servicedesk@usu.edu
Course Navigation

The course is divided into 18 modules. For each module, you should download the provided lecture notes and watch the appropriate lecture videos. While watching the lecture videos, you should add your own annotations to the notes provided. After watching the lecture videos, you should read the chapter in your textbook, focusing on the information covered in the lecture. You should do the recommended problems from past exams and check your answers in the back of the book. Only information covered in lectures will be on the exam, you will not be tested on information from the text that is not covered in class.

You are allowed to work ahead in this class. All of the quizzes for a particular exam will be open at the beginning of that section and will remain open until the submission date for the exam. Recommended due dates are assigned to quizzes to help keep you on pace. There will be a midterm exam after modules 5, 8, and 13, with a final exam after module 18. As this is a seven-week class, it is important to move through the material in a timely manner.

Quizzes

There are 18 graded quizzes each worth 5 points. Quizzes pertaining to each exam will be available anytime during the open window before the exam due date. For example quizzes 1-5 must be taken before Exam 1, quizzes 6-8 before Exam 2, quizzes 9-13 before Exam 3, and quizzes 14-18 before the final. All of the lectures and homework should be completed for each module before the quizzes are taken. Quizzes have a 20 minute time limit and should be done individually, but are open note and open book. For each quiz you may have two attempts and your best score is the score that will be kept. The questions on each attempt will not be identical, although they will cover the same concepts. Even if you do well on your first attempt, I strongly encourage you to utilize both attempts, as they will be good practice for your exams. Late submissions for quizzes will not be accepted. Please plan accordingly to avoid the potential issues that may occur with waiting until the due date to submit your quiz.

Midterm Exams

There will be a midterm exam after modules 5, 8, and 13 offered during specific testing windows as indicated in the course schedule. Each midterm exam will contain 33 questions worth 3 points each, plus one freebie point (100 points total per exam). You will not be allowed to take the midterm exams after their due dates. If you miss any of the exams due to a university-excused absence, you will be allowed to take a make-up exam offered at the end of the semester. Examples of excused absences include (1) university sponsored participation in an event or activity-only if the instructor is notified in advance, (2) documented serious illness that is verified by a doctor’s note and (3) family emergency when documented by the student’s academic advisor.

Please note that scheduled vacations, weddings, etc, are not considered excused absences under university policy. Make-up exams will be only given with instructor approval and pending you contact me within a week of the missed exam to schedule the make-up. Exams must be taken at a proctored location or by using the Proctorio browser extension. For more information please visit testing.usu.edu.

Final Exam

A final exam (66 questions: ½ comprehensive, ½ new material) worth 200 points will be given during the week of June 15-June 21) and must be taken at a proctored location or by using the Proctorio browser extension.
Coursework and Grading

In terms of final assignment of grades, you are guaranteed the following grades if your final class percentage lies within the indicated ranges:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>100 % to 93.0%</td>
</tr>
<tr>
<td>A-</td>
<td>< 93.0 % to 90.0%</td>
</tr>
<tr>
<td>B+</td>
<td>< 90.0 % to 87.0%</td>
</tr>
<tr>
<td>B</td>
<td>< 87.0 % to 83.0%</td>
</tr>
<tr>
<td>B-</td>
<td>< 83.0 % to 80.0%</td>
</tr>
<tr>
<td>C+</td>
<td>< 80.0 % to 77.0%</td>
</tr>
<tr>
<td>C</td>
<td>< 77.0 % to 73.0%</td>
</tr>
<tr>
<td>C-</td>
<td>< 73.0 % to 70.0%</td>
</tr>
<tr>
<td>D</td>
<td>< 70.0 % to 60.0%</td>
</tr>
<tr>
<td>F</td>
<td>< 60.0 %</td>
</tr>
</tbody>
</table>

Grades will not be rounded. A final grade of a 92.9% would earn an A-, while a 93.0% would earn an A.

Suggested Course Schedule

This course is self-paced in that you can work ahead, although ALL QUIZ AND TEST DUE DATES ARE FIRM, LATE SUBMISSIONS WILL NOT BE ACCEPTED! (Quiz and test due dates can be found on the assignments page or within the modules on Canvas.)

Below are suggested dates for finishing the lectures and quizzes within each module. Finishing the modules by the due dates below should give you enough time to prepare for quizzes and tests and to get additional help if needed. All coursework, including exams must be completed by the last day of the semester, June 21.

<table>
<thead>
<tr>
<th>Module</th>
<th>Suggested Completion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 1 (Chapter 1, 2)</td>
<td>May 8<sup>th</sup></td>
</tr>
<tr>
<td>Module 2 (Chapter 3, 4)</td>
<td>May 10<sup>th</sup></td>
</tr>
<tr>
<td>Module 3 (Chapter 6, 7)</td>
<td>May 12<sup>th</sup></td>
</tr>
<tr>
<td>Module 4 (Chapter 8, 9)</td>
<td>May 15<sup>th</sup></td>
</tr>
<tr>
<td>Module 5 (Chapter 33)</td>
<td>May 17<sup>th</sup> (Exam 1- Modules 1-5: May 11<sup>th</sup> - May 22<sup>nd</sup>)</td>
</tr>
<tr>
<td>Module 6 (Chapter 10)</td>
<td>May 20<sup>th</sup></td>
</tr>
<tr>
<td>Module 7 (Chapter 11, 12, 13)</td>
<td>May 23<sup>rd</sup></td>
</tr>
<tr>
<td>Module 8 (Chapter 14, 15)</td>
<td>May 27<sup>th</sup> (Exam 2- Modules 6-8: May 18<sup>th</sup> - May 29<sup>th</sup>)</td>
</tr>
<tr>
<td>Module 9 (Chapter 16, 17)</td>
<td>May 29<sup>th</sup></td>
</tr>
<tr>
<td>Module 10 (Chapter 18, 19)</td>
<td>May 31<sup>st</sup></td>
</tr>
<tr>
<td>Module 11 (Chapter 20, 21)</td>
<td>June 2<sup>nd</sup></td>
</tr>
<tr>
<td>Module 12 (Chapter 22)</td>
<td>June 4<sup>th</sup></td>
</tr>
<tr>
<td>Module 13 (Chapter 23, 24, 25, 26)</td>
<td>June 7<sup>th</sup> (Exam 3- Modules 9-13: June 1<sup>st</sup> - June 12<sup>th</sup>)</td>
</tr>
<tr>
<td>Module 14 (Chapter 27, 28)</td>
<td>June 9<sup>th</sup></td>
</tr>
<tr>
<td>Module 15 (Chapter 30)</td>
<td>June 11<sup>th</sup></td>
</tr>
<tr>
<td>Module 16 (Chapter 34)</td>
<td>June 14<sup>th</sup></td>
</tr>
<tr>
<td>Module 17 (Chapter 36, 37, 38)</td>
<td>June 16<sup>th</sup></td>
</tr>
<tr>
<td>Module 18 (Chapter 37, 38, 39, 40)</td>
<td>June 18<sup>th</sup> (Final Exam: June 15<sup>th</sup>- June 21<sup>st</sup>)</td>
</tr>
</tbody>
</table>
IDEA Objectives
1. Gaining factual knowledge (terminology, classifications, methods, trends).
2. Learning fundamental principles, generalizations or theories.
3. Learning to Apply Course Material (to improve thinking, problem solving and decisions).
4. Developing specific skills, competencies, and points of view needed by professionals in the field most closely related to this course.

Course Objectives
(Aligned to IDEA objectives in parentheses.)

By the end of this course, you will be able to:

- Describe the organization of living systems-domains, macromolecules, etc.
- Identify organic functional groups. (1)
- Describe chemical bonds and interactions found in biochemistry along with their relative bond energy strengths and distances. (1)
- Identify characteristics of hydrogen bonds, including hydrogen bond donors and acceptors. (2)
- Identify the electron domain and molecular geometry of water and describe how that contributes to the unique properties of water. (2)
- Describe the hydrophobic effect. (2)
- Using the equilibrium constant for the ionization of water, calculate the [H+] and [OH−] concentrations in solutions. (1)
- Use the pH scale to report the [H+] concentration of a solution and describe a solution in terms of acidity or basicity. (2)
- Describe the equilibrium of weak acids and bases and how this contributes to the buffering of a solution. (2)
- Use K_a and pK_a to describe the strength of a weak acid by how readily it ionizes. (2)
- Use the Henderson-Hasselbach equation to calculate pH, pK_a, or acid/conjugate base ratios. (2)
- Identify the names, three letter abbreviations and structures of the twenty amino acids. (1)
- Identify the ionization and charge of all amino acids from pH 1 to 14. (2)
- Identify the approximate pK_a values for the 8 ionizable amino acid side chains. (1)
- Identify the peptide bond between amino acids. (1)
- Describe the four levels of protein structure. (1)
- Identify the phi and psi bonds in a polypeptide and describe limitations of rotation angles. (1)
- Describe the key features of the alpha helix. (1)
- Describe the key features of the beta sheet. (1)
• Describe the bonds and interactions that hold together protein tertiary structure. (1)
• Describe the key features of protein quaternary structure and the interactions that hold together protein quaternary structure. (1)
• Identify the common roles and features of enzymes. (4)
• Identify how the reaction coordinate diagram changes for a reaction in the presence of an enzyme. (2)
• Describe how enzymes catalyze reactions. (2)
• Contrast the "Lock and Key" versus "Induced Fit" models of enzyme catalysis. (2)
• Mathematically describe the kinetics of a catalyzed reaction. (2)
• Use the Michaelis-Menten model and equation, and interpret the variables Vmax, Km and [S]. (2)
• Describe the relationship of velocity versus [S] and the double reciprocal plot. (2)
• Describe the kinetic parameters of an enzyme including turnover number and specific activity with appropriate units. (4)
• Describe the mechanism of action of competitive and noncompetitive inhibitors and the subsequent changes in Vmax and Km for each. (4)
• Describe plots of rate versus [S] and Lineweaver-Burke plots with and without competitive and noncompetitive inhibitors. (2)
• Identify and describe different types of enzyme cofactors: coenzymes, metal ions, prosthetic groups, cosubstrates. (4)
• Describe the sources for major coenzymes. (4)
• Describe the five major mechanisms of enzyme regulation: reversible, noncovalent modification; allosteric control; isozymes; reversible covalent modification; proteolytic activation. (4)
• Describe the allosteric mechanism and details of O₂ binding in hemoglobin. (4)
• Describe covalent modification of an enzyme. (2)
• Draw and name the structures of the five common bases: adenine, guanine, thymine, uracil, cytosine. (1)
• Draw and name the nucleotides and nucleosides including nomenclature and identification of the phosphates, sugar positions and linkages. (1)
• Draw linkages between nucleotides in DNA and during synthesis of RNA. (1)
• Use abbreviated nomenclature for primary sequence. (1)
• Describe basic features of a genome. (2)
• Describe the important features of the Watson-Crick model for the structure of DNA, including: dimensions, grooves, hydrogen bonding, intermolecular attractions, bond rotation restrictions. (1)

• Describe and identify the three major structural forms of DNA. (1)

• Describe the Meselson-Stahl experiment showing semi-conservative replication. (2)

• Describe secondary structure of DNA. (2)

• Describe levels of DNA winding and association with histone proteins. (1)

• Describe the basic features of DNA replication and the mechanism of DNA polymerases. (2)

• Define classes of RNA molecules. (1)

• Identify monosaccharides according to the number of carbon atoms and as aldoses or ketoses. (1)

• Rearrange ketose an aldose monosaccharides into the corresponding pyranose or furanose ring. (1)

• Identify the anomeric carbon in a cyclic sugar and designate the anomeric carbon α or β. (1)

• Link monosaccharides together via 1-4, and 1-6 linkages. (1)

• Identify the linkage type between two or more monosaccharides. (1)

• Describe the linkages between monomers in starch, glycogen and cellulose. (1)

• Classify lipids as fatty acids, mono-, di-, tri-glycerides, sphingolipids, phospholipids and isoprene derived lipids. (4)

• Name fatty acids according to the number of carbons and position of unsaturation. (1)

• Identify glycerol, fatty acids, and ester linkages in triglycerides. (1)

• Identify phospholipids. (1)

• Identify the backbone for sphingolipids. (1)

• Recognize cholesterol and its derivatives. (1)

• Recognize isoprene. (1)

• Define and describe lipid derived vitamins. (4)

• Describe the lipid bilayer that defines membranes. (1)

• Describe the fluid mosaic model of the cell membrane. (2)

• Describe integral or peripheral proteins in membranes. (1)

• Describe transport mechanisms. (4)

• Describe the action of adenylate cyclase (G protein), insulin, and IP3 signal transduction. (4)
• Characterize different second messengers. (1)
• Define and differentiate between exergonic and endergonic reactions. (1)
• Calculate ΔG from values of G from the reactants and products. (2)
• Define and calculate ΔG using the equation $\Delta G = \Delta H - T\Delta S$. (2)
• Define a state function. (2)
• Calculate ΔG using coupled equations. (3)
• Calculate ΔG from Keq. (2)
• Calculate ΔG for a reaction not at equilibrium. (2)
• Describe the energetics of ATP hydrolysis. (3)
• Identify and describe oxidation reduction reactions. (2)
• Diagram how NAD and FAD/FMN undergo redox reactions. (2)
• Describe the function of CoA. (2)
• Determine whether a molecule has undergone oxidation or reduction based on Lewis structures. (2)
• Describe glycolysis and gluconeogenesis and how they fit into the overall energy metabolism of a cell. (4)
• Identify and describe the involvement of cofactors as necessary at each step in glycolysis. (2)
• Identify the fates of pyruvate in the absence of O_2. (4)
• Describe the reactions unique to gluconeogenesis. (4)
• Define and describe the Cori cycle. (4)
• Describe the roles of the TCA cycle in metabolism. (4)
• Describe the cellular location of the TCA cycle reactions in prokaryotes and eukaryotes. (1)
• Describe and diagram the conversion of pyruvate to acetyl-CoA. (1)
• Identify the structure of CoA and the function of its reactive SH group. (1)
• Describe the cofactor/coenzyme requirement as necessary for each step in the TCA cycle when given the substrate and the product. (2)
• Recognize FeS cluster types. (1)
• Identify the ATP yield from the products of the TCA cycle. (1)
• Explain the purpose and reactions of the glyoxylate cycle. (2)
• Describe the functions of protons, gradients, electron transfer proteins, and ATP synthesis in prokaryotes and eukaryotes. (3)

• Describe and identify each of the five complexes in the electron transport chain, including what is oxidized, what is reduced, key cofactors, and where protons are pumped. (2)

• Recognize and identify the function of FMN and CoQ. (2)

• Describe the action of the ATP synthase complex. (2)

• Describe generally the terms light and dark reactions as they relate to photosynthesis. (1)

• Describe the cellular location of the reactions of photosynthesis in plants. (1)

• Describe and quantify the energy and wavelength of electromagnetic radiation. (2)

• Identify and describe the function of chlorophylls and other light absorbing molecules. (2)

• Describe resonance energy transfer. (2)

• Describe charge separation in the bacterial reaction center. (2)

• Describe water splitting and PQ reduction in PSII and the role of the special pair. (2)

• Describe the functions of the many chlorophyll molecules in light harvesting. (2)

• Identify the cofactors and functions of plastocyanin. (1)

• Understand the function and cofactor of PSI. (1)

• Explain the role of ATP synthase in photosynthesis. (3)

• Describe the general reactions of the Calvin cycle. (2)

• Describe the reaction catalyzed by Rubisco. (1)

• Characterize how carbon enters glycolysis/gluconeogenesis. (3)

• Describe the six key reactions in the metabolism of glycogen. (3)

• Describe how sucrose and starch are synthesized. (2)

• Describe the functions of the pentose phosphate phases. (2)

• Describe the differences between fatty acid catabolism and anabolism. (4)

• Describe the action of lipases. (2)

• Identify and describe the charging step of catabolism involving ATP. (1)

• Describe the steps of β oxidation of fatty acids. (2)

• Analyze the energy equivalents from β oxidation. (4)

• Describe how the oxidation of unsaturated fatty acids occurs. (4)
• Recognize ketone bodies. (4)
• Describe the steps in fatty acid synthesis. (2)
• Describe how fatty acids longer than C16 are made. (2)
• Describe how desaturation is introduced in a fatty acid. (2)
• Describe the target for the action of aspirin and ibuprofen. (4)
• Describe in general terms the transport of lipids and cholesterol. (4)
• Describe the process of protein degradation and the role of the proteosome. (4)
• Identify the fates of the C-portion of amino acids and the fates of the nitrogen. (4)
• Describe the action of transaminase enzymes like PLP. (2)
• Describe three major end products of nitrogen. (4)
• Describe the urea cycle. (4)
• Describe in general terms nitrogen fixation. (2)
• Identify the reactions of glutamate dehydrogenase, glutamine synthase, and glutamate synthase. (4)
• Describe the general carbon precursors for amino acid metabolism. (2)
• Differentiate between essential and non-essential amino acids. (4)
• Describe the placement of homocysteine and its role in heart disease and the role of B vitamins. (3)
• Identify the sources of carbon and nitrogen for the metabolism of purines and pyrimidines. (1)
• Describe the six basic rules of DNA replication. (2)
• Describe the Meselson and Stahl experiments. (2)
• Characterize the essential enzymes involved at the replication fork. (2)
• Describe the action of DNA polymerase. (1)
• Describe the exonuclease activities of polymerases and the functions of these reactions in DNA corrections. (2)
• Describe some examples of DNA damage. (4)
• Describe DNA repair mechanisms including mismatch repair, base excision repair, nucleotide excision repair and photolyase. (2)
• Identify the major groups of RNA molecules. (1)
• Describe the relationship between DNA and RNA. (2)
• Describe a promotor site and what binds to a promotor site. (2)
• Describe the roles of sigma subunits. (1)
• Diagram the replication bubble. (2)
• Describe factor dependent and factor independent termination. (2)
• Distinguish between mRNA in prokaryotes and eukaryotes. (2)
• Define the actions of repressors and activators in the regulation of gene expression. (2)
• Define the roles of inducers and corepressors. (2)
• Diagram the structure of t-RNA. (1)
• Define the modifications to the 5' and 3' ends of mRNA. (1)
• Discuss various splicing mechanisms for RNA, including the ribozyme. (2)
• Describe the basic features of protein synthesis. (2)
• Describe the major events that led to the identification of the process of protein synthesis. (2)
• Define the Crick adapter hypothesis. (1)
• Describe the key features of the genetic code. (1)
• Describe the functional parts of a tRNA molecule. (1)
• Describe the overall features of the ribosome. (1)
• Describe the events in the initiation, elongation and termination of protein synthesis. (2)
• Describe the basic features of protein targeting. (4)

University Policies & Procedures

Academic Freedom and Professional Responsibilities

Academic freedom is the right to teach, study, discuss, investigate, discover, create, and publish freely. Academic freedom protects the rights of faculty members in teaching and of students in learning. Freedom in research is fundamental to the advancement of truth. Faculty members are entitled to full freedom in teaching, research, and creative activities, subject to the limitations imposed by professional responsibility. Faculty Code Policy #403 further defines academic freedom and professional responsibilities.

Academic Integrity – "The Honor System"

Each student has the right and duty to pursue his or her academic experience free of dishonesty. To enhance the learning environment at Utah State University and to develop student academic integrity, each student agrees to the following Honor Pledge:

"I pledge, on my honor, to conduct myself with the foremost level of academic integrity."
A student who lives by the Honor Pledge is a student who does more than not cheat, falsify, or plagiarize. A student who lives by the Honor Pledge:

- Espouses academic integrity as an underlying and essential principle of the Utah State University community;
- Understands that each act of academic dishonesty devalues every degree that is awarded by this institution; and
- Is a welcomed and valued member of Utah State University.

Academic Dishonesty

The instructor of this course will take appropriate actions in response to Academic Dishonesty, as defined the University’s Student Code. Acts of academic dishonesty include but are not limited to:

- **Cheating**: using, attempting to use, or providing others with any unauthorized assistance in taking quizzes, tests, examinations, or in any other academic exercise or activity. Unauthorized assistance includes:
 - Working in a group when the instructor has designated that the quiz, test, examination, or any other academic exercise or activity be done “individually;”
 - Depending on the aid of sources beyond those authorized by the instructor in writing papers, preparing reports, solving problems, or carrying out other assignments;
 - Substituting for another student, or permitting another student to substitute for oneself, in taking an examination or preparing academic work;
 - Acquiring tests or other academic material belonging to a faculty member, staff member, or another student without express permission;
 - Continuing to write after time has been called on a quiz, test, examination, or any other academic exercise or activity;
 - Submitting substantially the same work for credit in more than one class, except with prior approval of the instructor; or engaging in any form of research fraud.
- **Falsification**: altering or fabricating any information or citation in an academic exercise or activity.
- **Plagiarism**: representing, by paraphrase or direct quotation, the published or unpublished work of another person as one’s own in any academic exercise or activity without full and clear acknowledgment. It also includes using materials prepared by another person or by an agency engaged in the sale of term papers or other academic materials.

For additional information go to: [ARTICLE VI. University Regulations Regarding Academic Integrity](#)

Sexual Harassment/Title IX

Utah State University is committed to creating and maintaining an environment free from acts of sexual misconduct and discrimination and to fostering respect and dignity for all members of the USU
community. Title IX and **USU Policy 339** address sexual harassment in the workplace and academic setting.

The university responds promptly upon learning of any form of possible discrimination or sexual misconduct. Any individual may contact USU’s **Affirmative Action/Equal Opportunity (AA/EO) Office** for available options and resources or clarification. The university has established a complaint procedure to handle all types of discrimination complaints, including sexual harassment (**USU Policy 305**), and has designated the AA/EO Director/Title IX Coordinator as the official responsible for receiving and investigating complaints of sexual harassment.

Withdrawal Policy and "I" Grade Policy

Students are required to complete all courses for which they are registered by the end of the semester. In some cases, a student may be unable to complete all of the coursework because of extenuating circumstances, but not due to poor performance or to retain financial aid. The term ‘extenuating’ circumstances includes: (1) incapacitating illness which prevents a student from attending classes for a minimum period of two weeks, (2) a death in the immediate family, (3) financial responsibilities requiring a student to alter a work schedule to secure employment, (4) change in work schedule as required by an employer, or (5) other emergencies deemed appropriate by the instructor.

Students with Disabilities

USU welcomes students with disabilities. If you have, or suspect you may have, a physical, mental health, or learning disability that may require accommodations in this course, please contact the **Disability Resource Center (DRC)** as early in the semester as possible (University Inn # 101, (435) 797-2444, **drc@usu.edu**). All disability related accommodations must be approved by the DRC. Once approved, the DRC will coordinate with faculty to provide accommodations.

Diversity Statement

Regardless of intent, careless or ill-informed remarks can be offensive and hurtful to others and detract from the learning climate. If you feel uncomfortable in a classroom due to offensive language or actions by an instructor or student(s) regarding ethnicity, gender, or sexual orientation, contact:

- Division of Student Affairs: https://studentaffairs.usu.edu, (435) 797-1712, **studentservices@usu.edu**, TSC 220
- Student Legal Services: https://ususa.usu.edu/student-association/student-advocacy/legal-services, (435) 797-2912, TSC 326,
- Access and Diversity: http://accesscenter.usu.edu, (435) 797-1728, **access@usu.edu**, TSC 315
- Multicultural Programs: http://accesscenter.usu.edu/multiculture, (435) 797-1728, TSC 315
- LGBTQA Programs: http://accesscenter.usu.edu/lgbtqa, (435) 797-1728, TSC 3145
- Provost’s Office Diversity Resources: https://www.usu.edu/provost/diversity, (435) 797-8176

You can learn about your student rights by visiting:

The Code of Policies and Procedures for Students at Utah State University: https://studentconduct.usu.edu/studentcode
Grievance Process

Students who feel they have been unfairly treated may file a grievance through the channels and procedures described in the Student Code: Article VII.

Emergency Procedures

In the case of a drill or real emergency, classes will be notified to evacuate the building by the sound of the fire/emergency alarm system or by a building representative. In the event of a disaster that may interfere with either notification, evacuate as the situation dictates (i.e., in an earthquake when shaking ceases or immediately when a fire is discovered). Turn off computers and take any personal items with you. Elevators should not be used; instead, use the closest stairs.